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We measure the dynamic exponent of the three-dimensional Ising model using 
a "damage spreading" Monte Carlo approach as described by Maclsaac and 
Jan. We simulate systems from L = 5 to L = 60 at the critical temperature, 
Tr = 4.5115. We report a dynamic exponent, z = 2.35 + 0.05, a value much larger 
than the "consensus" value of 2.02, whereas if we assume logarithmic 
corrections, we find that z = 2.05 _+ 0.05. 
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Reliable es t imat ion of the dynamic  critical exponents  is still an outs tanding  
problem.  In fact recent works even suggest uncer ta inty  in the value of the 
dynamic  exponent  for the two-dimensional  Ising model. Poole  and Jan tll 
and M a n n a  12~ report, a value of z for this model  of ~2.27,  which is 
apprec iably  higher than the "consensus" value of 2.13. Mac l saac  and Jan (3) 
with a different "damage  spreading ''14~ approach  find for the two-dimen-  
sional system z = 2 .16_  0.02, a value which is in good  agreement  with the 
"consensus" value of 2.13 and also with the recent slightly higher results of 
l to  cs~ and Adler  c6) (as cited by Ito),  z ~ 2 . 1 7 .  We apply  this method  to 
the three-dimensional  Ising model  at its critical temperature ,  J / k T c =  
0.221655.17~ 

A brief descr ipt ion of the method  is now given, but  the interested 
reader  is referred to ref. 3 for details  and just if icat ion of the method.  A 
system, labeled A, of size L * L �9 L is cloned to give a replica, labeled B. 
An extra  layer of bounda ry  spins is kept  up in system A and down in 
system B. Both systems are al lowed to equil ibrate  with heat -bath  t ransi t ion 
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probabilities. (s) Identical sites of both A and B lattices are visited at the 
same time, and the same random number  is used to determine the status 
of the spin at this site. A Monte Carlo time step (MCS) consists of ran- 
domly visiting each site of the lattice once. After equilibration, the bound-  
ary layer is replaced by periodic boundary  conditions. The set of sites in 
different states in a comparison of A and B is called the damage. The equi- 
librium damage with the pinned boundaries is the spontaneous magnetiza- 
tion and the Monte Carlo procedure with the periodic boundaries is con- 
tinued until all the damage disappears, i.e., both systems A and B are in the 
same configuration. This procedure is repeated 5000 times for the smaller 
systems (L ~< 15) and at least 2000 times for the systems with 15 < L < 45 
and 500 times for L = 5 0  and 60. The total C P U  time taken is 
approximately 90 days on an H P  9000-720 workstation. For  further details 
of the Monte Carlo method see Binder (9) and on "damage spreading" see 
Coniglio e t a / .  ( l~ and Glotzer et al. (11) 

The time taken for the magnetization to disappear is a measure of the 
relaxation of the system from an initial equilibrium state to one which has 
lost all memory of the past. The average damage vs. time is shown in Fig. 1 
for 200 trials and L = 27 in three dimensions and also for L = 60 in two 
dimensions. The average is obtained by dividing the damage by the total 
number  of trials, no t  by the number  of trials with nonzero damage at the 
time considered. This figure is shown to display the relaxation of the 
magnetization, or damage, and is not used to determine the numerical 

L = 27 (3-d) 
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Fig. 1. The decay of the average damage, for L = 27 at To, with time in MCS for 200 trials. 
The decay of the damage for L = 60 in two dimensions at T c is also shown. 
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results reported here. Note  the rather sharp drop of the equilibrium 
damage as the pinned boundaries are replaced by periodic ones. This is 
followed by slower modes of relaxation. The average time taken for the 
damage to decay to zero is related to the slowest mode of relaxation 3, and 
dynamic scaling ~12} asserts that 

z ~ L  ~ (I) 

The average time for the magnetization to disappear is 265 MCS (Monte 
Carlo steps) for L = 8, 5990 MCS for L = 30, and 28300 MCS for L = 60. 
An attractive feature of this method is that there is no need to make any 
assumptions about the form of the relaxation curve, e.g., one- or two- 
exponential fits, etc., problems which plague some methods. We have an 
unambiguous method for measuring 3. Figure 2a shows a plot of these data 
on a log- log  scale. The slope is 2.35___ 0.05. This value is higher than the 
popular value of 2.02___0.02 (ref. 13 and references therein), and also the 
more recent slightly higher estimates near 2.07. tS} 

We are somewhat perplexed by this large value. The recent work of  
de Arcangelis et al. ~'41 used "damage spreading" from a single central site to 
measure the fractal dimensionality of the damage cloud as a function of L. 
They measured the mass of the instantaneous damage as a function of L 
and of Rg and observed that d / ~  1.9, not the value of 2.5 as expected. The 
data were further analyzed assuming various forms of  logarithmic correc- 
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Fig. 2. (a) The average time taken for the damage to reach zero vs. system size. The slope 
of the straight line is 2.35. (b) The average time/In(L) for the damage to reach zero vs. system 
size. The slope of the straight line is 2.05. 
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tions or logarithmic prefactors and only for these cases were they able to 
reconcile the effective fractal dimensionality with the expected asymptotic 
result. Implicit in their analysis is that there is also a log correction either 
associated with the time dependence of the "damage" mass or the time 
dependence of the spatial extent of the "damage" cloud. 

We may view the relaxation of the damage as a process similar to the 
radioactive decay of atoms, t~5~ Thus the time-dependent decay of the 
damage is described by D o e - ' / L  If at time t,,, the initial damage Do, which 
scales with system size as LdC decays to zero, then Doe - 'm/~~ O(1). Now 
we find that I m scales as 

t,, ~ L:dzln(L ) (2) 

The results assuming this form of scaling are shown in Fig. 2b. The straight 
line is one of slope 2.05 __+ 0.04. 

Figure 3 is a semilog plot of the number of trials with nonzero damage 
as a function of time for 2D systems (the curves that extend to 15000 
MCS) and 3D systems (the shorter curves). Here there is clear indication 
that there is an exponential decay in the number of survivors. Figure 4 
shows the average damage per spin as a function of time, where the average 
is taken from the number of suroiving trials at that time. There is clear 
evidence of finite-size effect in that the damage is ~ L  -p/" and stays that 
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Fig. 3. The log of the number of surviving trials vs. time for 2D systems (upper curves) and 
3D systems (lower curves). (+) L=60 system, (<~) L=20 (2D), (x) L=27, ([]) L=I3 
(3D). 
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Fig. 4. The average damage vs. time for (a) L = 60 (2D) and (b) L = 27 (3D) systems where 
the average is taken from those trials with nonzero damage at that time step. The steady-state 
damage is ~ L-/~/". 

way until a fluctuation drives it to zero. This is very similar to the observed 
behavior of the equilibrium magnetization of finite systems; the magnetiza- 
tion at T c oscillates between positive and negative values of L -a/" and the 
time taken to tunnel from one value to another is a measure of T, the 
characteristic relaxation time. These results are at odds with logarithmic 
corrections. 

We have used a method which in principle is unambiguous in its 
implementation with no subjective assessment of the relaxation time r. The 
method was applied to the two-dimensional Ising model and led to a result 
for the dynamic exponent z which is in remarkable good agreement with 
the much larger systems investigated in ref. 5. The same method applied to 
the three-dimensional Ising model leads to an unexpected large value 
(2.35 + 0.05) for z. Assuming the presence of a logarithmic correction which 
is implicit in ref. 14, we find that z is approximately 2.05 (see also the recent 
work of Hunter  et aL(16)). This value is in keeping with earlier work, the 
recent work of Stauffer t~SJ and Ito c5) referred to above, and Heuer. (~7~ 
However, if we assume that a logarithmic correction is also appropriate for 
the two-dimensional Ising system, c3~ then we obtain a value of z of ~<2.0, 
much lower than the expected value of  2.17. We have found no direct 
evidence to justify logarithmic corrections. 
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NOTE ADDED IN PROOF 

D. Stauffer has obtained results which are roughly compatible with those 
reported here, using an independent computer program. 
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